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Abstract
We derive gap equations for superconductivity in coexistence with
ferromagnetism. We treat singlet and triplet states with either equal spin
pairing (ESP) or opposite spin pairing (OSP) states, and study the behaviour of
these states as a function of exchange splitting. For the s-wave singlet state we
find that our gap equations correctly reproduce the Clogston–Chandrasekhar
limiting behaviour and the phase diagram of the Baltensperger–Sarma equation
(excluding the FFLO region). The singlet superconducting order parameter
is shown to be independent of exchange splitting at zero temperature, as is
assumed in the derivation of the Clogston–Chandrasekhar limit. P-wave triplet
states of the OSP type behave similarly to the singlet state as a function of
exchange splitting. On the other hand, ESP triplet states show a very different
behaviour. In particular, there is no Clogston–Chandrasekhar limiting and the
superconducting critical temperature, TC, is actually increased by exchange
splitting.

PACS numbers: 71.70.Ej, 74.20.Fg, 74.20.Rp, 74.25.Bt, 74.25.Dw, 74.25.Ha,
74.25.Nf

1. Introduction

The recent discovery of the coexistence of ferromagnetism and superconductivity in
UGe2 [1], URhGe [2] and ZrZn2 [3] has led to renewed interest in the relationship
between ferromagnetism and superconductivity. By contrast, the relationship between
antiferromagnetism and superconductivity has been more thoroughly studied [4], since it
is relevant to many compounds, such as the cuprates [5], borocarbides [6], heavy Fermion
superconductors [7] and the layered organic superconductors [8].

Interest has been focused on superconductivity on the border of a magnetic phase and in
particular in the vicinity of a quantum critical point (QCP). This is observed experimentally
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in cuprates, several heavy Fermion systems and the borocarbides. On the other hand,
superconductivity is observed near first-order magnetic ordering transitions in the layered
organics [8] and UGe2 [9]. It is also thought that URhGe2 may be essentially similar to
UGe2 but under the influence of ‘chemical pressure’ [2]. The ferromagnetism in ZrZn2

shows a QCP at high pressures. But in this case, unlike UGe2, the highest superconducting
transition temperatures are observed at ambient pressure, that is at the furthest point from the
ferromagnetic–paramagnetic QCP.

Theoretically it is thought that at or near to the QCP quantum spin fluctuations can lead
to spin-fluctuation-induced pairing. For the case of ferromagnetic QCP, this was first studied
by Fay and Appel [10] (who also suggested that ZrZn2 might be a suitable system in which
to observe this effect). In this case the ferromagnetic spin fluctuations lead to spin- triplet
pairing, this is analogous to the case of superfluid 3He. By contrast, in the case of quantum
critical antiferromagnetic spin fluctuations spin-singlet d-wave pairing states are favoured [5].

Currently, very little is known about the superconducting pairing state in the ferromagnetic
superconductors UGe2, URhGe and ZrZn2. If the pairing mechanism is indeed caused by
ferromagnetic spin fluctuations, then we might expect spin triplet pairing states. However,
presently there is insufficient evidence in support of this hypothesis to be decisive. Thus, it
is still legitimate to consider other scenarios. In fact this is what we shall do here. In short,
we point out that the decline of the superconducting transition temperature, TC, with pressure
could be a simple consequence of p-wave pairing of arbitrary origin in an exchange field.

In particular, we will consider a simple model of the coexistence between ferromagnetism
and superconductivity based on a parameterised electron–electron attractive interaction of
unspecified origin. We will derive Bogoliubov–de Gennes (BdG) and gap equations for this
model using the Hartree–Fock–Gorkov approximation. We will consider separately the cases
of: spin singlet (s-wave) pairing, opposite spin pairing (OSP) and equal spin pairing (ESP)
spin triplet (p-wave) states. Solving the gap equations for these pairing states, we will then
illustrate some important properties of superconductivity in the presence of ferromagnetism.

2. A simple model for a ferromagnetic superconductor

We consider superconductivity arising in a Hubbard model with an effective attractive pairwise
interaction Uijσσ ′ , acting between electrons at crystal sites i, j with spins σ and σ ′. In
principle, this effective interaction could arise from either conventional pairing mechanisms,
such as electron–phonon coupling, or exchange of spin-fluctuations. Here we shall assume
that the effective interaction is both short-ranged in space, namely Uijσσ ′ �= 0 only for i = j

or nearest neighbours, and non-retarded.
In the ferromagnetic state, we must also include the effective exchange field caused by

the ferromagnetism. This enters the model Hamiltonian as the Zeeman splitting Vxc. Thus the
complete Hamiltonian for this model is

Ĥ = −
∑
ijσ

tij ĉ
†
iσ ĉjσ +

1

2

∑
ijσσ ′

Uijσσ ′ n̂iσ n̂jσ ′ +
∑
iσσ ′

ĉ
†
iσ (σσσ ′ · Vxc)ĉiσ (1)

where the ĉ
†
iσ are the usual annihilation (creation) operators for electrons, n̂iσ is the number

operator and the σσσ ′ are the components of the vector of Pauli matrices

σ = (σ
1
, σ

2
, σ

3
). (2)

In this context, we should note that the ferromagnetism of ZrZn2 is accurately described
by the LSDA as a weak itinerant ferromagnet. Experimentally, the exchange splitting is
clearly resolved in de Haas–van Alphen experiments [11] and band structure calculations (also
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presented in reference [11]) are in excellent agreement with these experiments. Moreover,
the calculated moment (0.18µB ) is close to the observed moment (0.17µB ). Both the Curie
temperature, TFM , and low temperature magnetisation are linear functions of pressure [12].
Hence the low-temperature magnetisation is a linear function of TFM , in line with the
predictions of the Stoner model. The most unusual magnetic property of ZrZn2 is that,
although a field of 0.05 T is enough to form a single magnetic domain, the ordered moment is
unsaturated up to 35 T [3, 13]. This is far more naturally understood in an itinerant model such
as LSDA or the Stoner model than, say, the Heisenberg model. On the other hand, we hasten
to add that it is not clear whether this picture is useful for the ferromagnetic superconductor
UGe2, since there the moments are much more strongly localized.

Making the usual Hartree–Fock–Gorkov approximation, such that �ijσσ ′ =
−Uijσσ ′ 〈ĉiσ ĉjσ ′ 〉, and using the spin-generalized Bogoliubov–Valatin transformation,

ĉiσ =
∑
kσ ′

ukσσ ′(Ri )γ̂kσ ′ + v∗
kσσ ′(Ri )γ̂

†
kσ ′ (3)

subject to the completeness relation∑
kσ

(u∗
kασ (Ri )ukβσ (Rj ) + vkασ (Ri )v

∗
kβσ (Rj )) = δij δαβ (4)

we find that the Bogoliubov de Gennes (BdG) equations for this Hamiltonian are


εk + Vxc3 Vxc1 − iVxc2 �↑↑(k) �↑↓(k)

Vxc1 + iVxc2 εk − Vxc3 �↓↑(k) �↓↓(k)

−�∗
↑↑(−k) −�∗

↑↓(−k) −ε−k − Vxc3 −Vxc1 − iVxc2

−�∗
↓↑(−k) −�∗

↓↓(−k) −Vxc1 + iVxc2 −ε−k + Vxc3







u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)




= Eσ (k)




u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 (5)

where εk is the normal (that is non-superconducting and non-ferromagnetic) state energy and
Vxc = (Vxc1, Vxc2, Vxc3).

The superconducting order parameter, �σσ ′(k), is calculated self-consistently from

�σσ ′(k) = −1

2

∑
qσ ′′

Uσσ ′(k − q)(uσσ ′′(−q)v∗
σ ′σ ′′(−q) − v∗

σσ ′′(q)uσ ′σ ′′(q))
(
1 − 2fEqσ ′′

)
. (6)

We now introduce the Balain–Werthamer (BW) transformation [14, 15],

�(k) ≡
(

�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)
= (d0(k) + σ · d(k))iσ2 (7)

which separates the superconducting order parameter into a singlet (scalar) part, d0(k) and
a triplet (vector) part, d(k) = (d1(k), d2(k), d3(k)). In terms of these parameters, the BdG
equations can be rewritten as


εk + Vxc3 Vxc1 − iVxc2 −d1(k) + id2(k) d0(k) + d3(k)

Vxc1 + iVxc2 εk − Vxc3 −d0(k) + d3(k) d1(k) + id2(k)

−d∗
1 (k) − id∗

2 (k) −d∗
0 (k) + d∗

3 (k) −ε−k − Vxc3 −Vxc1 − iVxc2

d∗
0 (k) + d∗

3 (k) d∗
1 (k) − id∗

2 (k) −Vxc1 + iVxc2 −ε−k + Vxc3







u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)




= Eσ (k)




u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 . (8)
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Using this formalism, it is also possible to calculate the free energy in the general case.
This is given by

F =
∑
kασ

εk(u
∗
ασ (−k)uασ (−k)fkσ + vασ (k)v∗

ασ (k)(1 − fkσ ))

− 1

2

∑
kk′αβσσ ′

(U(k − k′)[u∗
ασ (−k)vβσ (k)fkσ + vασ (−k)u∗

βσ (k)(1 − fkσ )]

× [uασ ′(−k′)v∗
βσ ′(k′)fk′σ ′ + v∗

ασ ′(−k′)uβσ ′(k′)(1 − fk′σ ′)])

+
∑
kαβσ

(σαβ · H)(u∗
ασ (k)uβσ (k)fkσ + vασ (k)v∗

ασ (k)(1 − fkσ ))

− kBT
∑
kσ

[fkσ ln fkσ + (1 − fkσ ) ln (1 − fkσ )]. (9)

At this stage, one must resort either to solving these equations numerically [16, 17], or
to studying special cases. In this paper, we shall take the later approach. First, we begin by
considering the case of singlet pairing only (i.e., d1(k) = d2(k) = d3(k) = 0). In section 4,
we will consider the case of only triplet pairing (i.e., when d0(k) = 0).

3. The coexistence of singlet superconductivity and ferromagnetism

In the case of an s-wave spin singlet superconductor, it was shown by Fulde, Ferrel, Larkin and
Ovchinnikov (FFLO) [18, 19] that the superconducting ground state becomes non-uniform
for large external exchange fields. This solution is well known, and we shall not study it here.
On the other hand, there are also solutions which are spatially uniform. Whichever of these
solutions is the ground state can only be determined by calculating the free energy for both
and finding which is the lower solution. In strong fields, the FFLO state will be the minimum,
but in weaker fields the FFLO state will be unstable to the uniform solution. In the rest of this
section, we study the gap equations for the spatially uniform case.

It is straightforward to show that d0(k) transforms as a scalar under spin rotation. Thus, if
there is no superconductivity in the triplet channel, we can, without loss of generality, rewrite
the BdG equations as


εk + Vxc 0 0 d0(k)

0 εk − Vxc −d0(k) 0
0 −d∗

0 (k) −ε−k − Vxc 0
d∗

0 (k) 0 0 −ε−k + Vxc







u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 = Eσ (k)




u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 (10)

by rotating our spin reference frame so that Vxc =
√

Vxc1
2 + Vxc2

2 + Vxc3
2.

Equation (10) can be separated into two sets of BdG equations, so we have(
εk + Vxc d0(k)

d∗
0 (k) −εk + Vxc

) (
u↑↑(k)

v↓↑(k)

)
= E↑(k)

(
u↑↑(k)

v↓↑(k)

)
(11)

and (
εk − Vxc −d0(k)

−d∗
0 (k) −εk − Vxc

) (
u↓↓(k)

v↑↓(k)

)
= E↓(k)

(
u↓↓(k)

v↑↓(k)

)
. (12)

It is now a simple matter to regain the standard result [20] for the spectrum of a singlet
superconductor in a spin only magnetic field:

Eσ (k) =
√

ε2
k + |d0(k)|2 + σ |Vxc| (13)
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Figure 1. The four branches of the singlet spectrum in a magnetic field. Inset, the zero field limit
where the two spin branches become degenerate. The branches are (a) the spectra for σ =↑,
(b) the spectra for σ = ↓, (c) the normal state spectra in zero field and (d ) the singlet spectrum for
Vxc = 0.

with σ =↑≡ 1 and σ =↓≡ −1. The four corresponding energy levels are sketched in
figure 1. Equation (13) clearly reduces to the standard BCS expression for the spectrum of a
singlet superconductor in the absence of exchange splitting as Vxc → 0. Also, when Vxc = 0
equations (11) and (12) reduce to the usual BdG equations [21] and we see that we are justified
in associating d0(k) with the usual singlet superconducting order parameter �(k).

It is clear from equation (10) that

uσ−σ (k) = vσσ (k) = 0 (14)

and it can also be shown that

uσσ (k) = d0(k)√
(E0(k) − εk)2 + |d0(k)|2

(15)

and

vσ−σ (k) = E0(k) − εk√
(E0(k) − εk)2 + |d0(k)|2

(16)

where

E0(k) =
√

εk + |d0(k)|2. (17)

E0(k) is, of course, of the same mathematical form as the spectrum of a singlet superconductor
in the absence of exchange splitting. However, it is not correct to say that E0(k) is the spectrum
of a singlet superconductor in the absence of exchange splitting as the value of d0(k) (although,
importantly, not the value of ε(k)) depends on Vxc in general.

Substituting our expressions for the eigenvectors of the BdG into the self-consistency
condition (6), we find that the gap equation is

d0(k) = −1

4

∑
kσ

Uσ−σ (k)
d0(k)

E0(k)
tanh

(
E0(k) + σVxc

2kBT

)
. (18)
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In the absence of exchange splitting, the gap equation regains its familiar BCS form [22].
However, we note that surprisingly the exchange splitting dependence of the gap only enters
via the Fermi (tanh) term. This means that when T = 0, the gap equation becomes

d0(k) = −1

4

∑
kσ

Uσ−σ (k)
d0(k)

E0(k)
(19)

which is independent of Vxc.
We must now ask what this result means physically. The most obvious conclusion is that,

at zero temperature, the gap is independent of exchange splitting. This is true, but with one
condition, which we will discuss below.

The gap equation is a nonlinear integral equation. And, as such, has, in general, more
than one solution. (For example, the trivial solution d0(k) = 0 is always a solution.) All
that we have actually shown is that for any given solution d0(k) is independent of Vxc at
T = 0. To find the ground state, we must consider all possible solutions and calculate the
free energy of each solution. In the absence of exchange splitting, the gap equation can be
derived by minimizing the free energy with respect to the superconducting order parameter
[23]. This leads to the conclusion that the trivial solution is only the ground state when
no other solution exists. However, no such proof exists for a superconductor in a finite
exchange splitting. This means that it is perfectly possible for there to be a phase transition
from the superconducting to normal states as the exchange splitting is increased at zero
temperature. Any such phase transition will be ‘perfectly’ first order in the sense that the
order parameter will jump from zero (above the critical exchange splitting, V C

xc) to some
finite value (below V C

xc) and remain at that value for all Vxc � V C
xc. The order parameter

as a function of exchange splitting will therefore resemble a Heaviside step function. Of
course, as in general other superconducting phases can exist (such as the FFLO state) phase
transitions can also occur between different superconducting phases in a similar manner
[17].

Such a phase transition was first studied independently by Clogston [24] and
Chandrasekhar [25] who both, in fact, assumed the independence of d0(k) on Vxc that we have
derived above. Using this assumption they were able to show from simple thermodynamics that
if the exchange splitting is greater than V P

xc ≡ |�(0)|/√2 where |�(0)| is the superconducting
gap at zero temperature (and zero exchange splitting) then the normal state has a lower energy
than the s-wave superconducting state. This is known both as Clogston–Chandrasekhar
limiting and as Pauli-paramagnetic limiting. Clogston–Chandrasekhar limiting clearly applies
to all singlet states, but does not necessarily apply to triplet states. In most superconducting
materials, µBHC2 < V P

xc. Therefore, if a superconductor has a large upper critical field
in comparison to the Clogston–Chandrasekhar limit this is a good evidence for triplet
superconductivity. The FFLO state can also display µBHC2 > V P

xc. Clogston–Chandrasekhar
limiting has been observed in the layered organic compound κ−(BEDT-TTF)2 Cu(SCN)2 [26]
when a magnetic field is applied parallel to the layers (which prevents the formation of orbital
currents due to the highly two-dimensional nature of the material). However, strong coupling
effects complicate the analysis of this material.

To illustrate this point, we have solved the gap equation (18) numerically for a cubic
lattice. We assumed Uijσσ = Uδij (i.e., an on-site interaction) corresponding to the case of
local s-wave pairing. The comparison between the calculated superconducting and normal
state free energies, leads to the phase diagram given in figure 2. This calculated phase
diagram is in excellent agreement with that calculated from the Baltensperger–Sarma equation
[27, 28]. However, while the Baltensperger–Sarma equation only allows for the calculation
of the superconducting-metal phase transition, our numerical gap equation solution allows for
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0 0.1 0.2 0.3 0.4 0.5

T/∆(0)
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0.4

0.6

0.8

V xc
/∆

(0
)

Figure 2. The phase diagram of an s-wave superconductor in an exchange field calculated by
solving the spin generalized BdG equations self-consistently. Note that as the phase transition is
first order in the presence of exchange splitting, the free energy must be calculated for both the
normal and superconducting states to correctly construct this phase diagram.

the evaluation of the order parameter at any point in T –Vxc space and hence for the evaluation
of thermodynamic variables such as the heat capacity,

CV =
∑
kσ

1

kBT 2
fkσ (1 − fkσ )

(
E2

kσ − 1

Ekσ − σVxc

∂|d0(k)|2
∂T

)
(20)

and the magnetisation [20],

M = − V

(2π)3

∑
σ

σ

∫
d3k

1

1 + e(Ekσ −µ)/kBT
(21)

where V is the volume of the first Brillouin zone.
A numerical study of these equations [17] shows that, in an exchange field, the

thermodynamic functions ‘see’ an effective gap, �eff , i.e.,

{CV ,M, χ} ∼ e− �eff
kB T (22)

where

�eff = |�(0)| − |Vxc|. (23)

4. The coexistence of triplet superconductivity and ferromagnetism

We will now consider the properties of a triplet superconductor in a magnetic field. Using
a similar approach to the singlet case above, we are able to derive many of the same
physical quantities. This highlights both similarities and differences between the singlet
and triplet cases, which may perhaps help in identifying the pairing state symmetry in specific
ferromagnetic superconductors.

Before we begin, we will generalize a useful theorem due to de Gennes [21]. We begin
by writing the BdG equations (5) in a pseudo-spinor notation:
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ξ(k) �

k

−�∗
−k

−ξ ∗(k)

)(
u σ (k)

v σ (k)

)
= Eσ (k)

(
u σ (k)

v σ (k)

)
(24)

where

ξ(k) =
(

εk + Vxc3 Vxc1 − iVxc2

Vxc1 + iVxc2 εk − Vxc3

)
(25)

�
k

=
(

�↑↑(k) �↑↓(k)

�↓↑(k) �↓↓(k)

)
(26)

u σ (k) =
(

u↑σ (k)

u↓σ (k)

)
(27)

and

v σ (k) =
(

v↑σ (k)

v↓σ (k)

)
. (28)

Multiplying by −1, taking the complex conjugate, parity inverting and exchanging the rows
of equation (24) leads to(

ξ(k) �
k

−�∗
−k

−ξ ∗(−k)

) (
u∗

σ (−k)

v∗
σ (−k)

)
= −Eσ (k)

(
u∗

σ (−k)

v∗
σ (−k)

)
(29)

as both Eσ (k) and ξ(k) are even under parity inversion.

We have therefore shown that if
(uσ (k)

vσ (k)

)
is an eigenvector of the spin-generalized BdG

equations in a magnetic field, with the corresponding eigenvalue Eσ (k), then
(u∗

σ (−k)

v∗
σ (−k)

)
is also

an eigenvector and that the corresponding eigenvalue is −Eσ (k). As σ can take two values
(↑ or ↓) we have identified all of the eigenstates.

This analysis holds for both triplet and singlet states. (For a singlet state with |Vxc| = 0,
it clearly reduces to the theorem of de Gennes.) The spectrum for a singlet superconductor in
an exchange field (shown in figure 1) is clearly in agreement with this theorem.

When studying triplet states, and particularly when studying the effect of exchange
splitting on the triplet state, it is useful to introduce the notion of unitary and non-unitary
states. For a triplet state

�
k
�†

k
= I |d(k)|2 + iσ · (d(k) × d(k)∗) (30)

and, in the absence of exchange splitting,

Eσ (k) =
√

ε2
k + |d(k)|2 + σ |d(k) × d(k)∗|. (31)

It is therefore useful to introduce the vector q(k) which is defined by

q(k) = id(k) × d(k)∗. (32)

It is clear that q(k) is a real vector. A unitary state is defined as any state in which q(k) = 0
for all k.

By setting the singlet order parameter, d0(k), to zero we can write down the BdG equations
for a triplet superconductor in an exchange field,
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εk + Vxc3 Vxc1 − iVxc2 −d1(k) + id2(k) d3(k)

Vxc1 + iVxc2 εk − Vxc3 d3(k) d1(k) + id2(k)

−d∗
1 (k) − id∗

2 (k) d∗
3 (k) −εk − Vxc3 −Vxc1 − iVxc2

d∗
3 (k) d∗

1 (k) − id∗
2 (k) −Vxc1 + iVxc2 −εk + Vxc3







u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)




= Eσ (k)




u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 . (33)

The eigenvalues of these BdG equations are given by [17]

Eσ (k) =
√

ε2
k + µ2

B |Vxc|2 + |d(k)|2 + σ
√

(k) (34)

where

(k) = |q(k)|2 + 4ε2
kµ

2
B |Vxc|2 + 4µ2

B |Vxc · d(k)|2 + 4εkµBVxc · q(k). (35)

In zero field, we clearly have the usual result (31) for the spectrum of a triplet superconductor.
Again, we can also derive the expressions for thermodynamic quantities in a general

triplet state. For example, the heat capacity is given by

CV =
∑
kσ

fkσ (1 − fkσ )

kBT 2

(
Eσ (k)2 − T

2

d

dT
|d(k)|2

)
(36)

and the (vector) magnetisation, M , is given by

M =
∑

k

(u∗
↑σ (k)u↓σ (k)fkσ + v↑σ (k)v∗

↓σ (k)(1 − fkσ )

+ u∗
↓σ (k)u↑σ (k)fkσ + v↓σ (k)v∗

↑σ (k)(1 − fkσ ),

− iu∗
↑σ (k)u↓σ (k)fkσ − iv↑σ (k)v∗

↓σ (k)(1 − fkσ )

+ iu∗
↓σ (k)u↑σ (k)fkσ + iv↓σ (k)v∗

↑σ (k)(1 − fkσ ),

+ u∗
↑σ (k)u↑σ (k)fkσ + v↓σ (k)v∗

↓σ (k)(1 − fkσ )

−u∗
↓σ (k)u↑σ (k)fkσ − v↓σ (k)v∗

↑σ (k)(1 − fkσ )). (37)

Following the methods of Sigrist and Ueda [29], it can be shown [17] that in the absence
of exchange splitting the gap equations for a triplet superconductor are

�αβ(k) =
∑
k′

Uαβ(k − k′)
[

1

4Ek↑

(
d(k) + i

q(k) × d(k)

|q(k)| tanh

(
βEk↑

2

))

+
1

4Ek↓

(
d(k) − i

q(k) × d(k)

|q(k)| tanh

(
βEk↓

2

))]
. (38)

However, these methods do not generalize to a finite exchange splitting. Fortunately, triplet
states can be separated into three classes: those that contain only OSP states, those that contain
only ESP states and those that contain both OSP and ESP states. The first two cases represent
a great simplification and we will now study these special cases. However, it should be noted
that neither of the formalisms presented below can deal with states that contain both OSP and
ESP such as the B and B2 phases.

4.1. Opposite spin pairing

An OSP state is defined as any state for which d(k) × Vxc = 0 for all k. Thus, in this limited
sense, we may describe d(k) as parallel to Vxc. Much as in the case of singlet pairing we can,
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without loss of generality, rotate the system, recalling that d(k) transforms as a vector under
rotation, so that


εk + Vxc 0 0 d3(k)

0 εk − Vxc d3(k) 0
0 d∗

3 (k) −ε−k − Vxc 0
d∗

3 (k) 0 0 −ε−k + Vxc







u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


= Eσ (k)




u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


. (39)

Again we can separate (39) into two BdG equations and hence, in a similar manner to
which we derived the singlet gap equation, we find that the gap equations for OSP triplet
superconductivity are

d3(k) = −1

4

∑
kσ

Uσ−σ (k)
d3(k)

E0(k)
tanh

(
E0(k) + σVxc

2kBT

)
. (40)

Note that this equation is of precisely the same mathematical form as the singlet gap
equation (18). Both the phase diagram and the effective gap ‘seen’ by thermodynamic probes
are the same as we earlier found for singlet superconductivity. However, this time the effective
gap ‘seen’ by thermodynamic probes is given by [16, 17]

�eff = |d(kF )| − |Vxc| (41)

where |d(kF )| is the mean gap at the Fermi surface.
All singlet pairing states are, by definition, OSP states. Thus it appears that, in the

presence of exchange splitting, the important property of a state is whether it is an OSP or an
ESP state, not whether it is a triplet or a singlet state.

4.2. Equal spin pairing

An ESP state is defined as any state for which d(k) · Vxc = 0 for all k. Thus, in this limited
sense, we may describe d(k) as perpendicular to Vxc. In this case, for Vxc = (0, 0,−Vxc), the
spin triplet BdG equations are


εk − Vxc 0 �↑↑(k) 0
0 εk + Vxc 0 �↓↓(k)

−�∗
↑↑(−k) 0 −ε−k + Vxc 0
0 −�∗

↓↓(−k) 0 −ε−k − Vxc







u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 = Eσ (k)




u↑σ (k)

u↓σ (k)

v↑σ (k)

v↓σ (k)


 .

(42)

We can now easily separate the BdG equations into a pair of BdG equations for up
electrons, (

εk − Vxc �↑↑(k)

−�∗
↑↑(−k) −ε−k + Vxc

) (
u↑σ (k)

v↑σ (k)

)
= Eσ (k)

(
u↑σ (k)

v↑σ (k)

)
. (43)

and a set of BdG equations for down electrons,(
εk + Vxc �↓↓(k)

−�∗
↓↓(−k) −ε−k − Vxc

)(
u↓σ (k)

v↓σ (k)

)
= Eσ (k)(u↓σ (k)). (44)

Using the self-consistency condition (6), we easily find that the gap equations are

�σσ (k) = −
∑
k′

Uσσ (k − k′)�σσ (k′)
2Eσ (k′)

(
1 − 2fEk′σ

)
. (45)

with

Ekσ =
√

(εk − σVxc)
2 + |�σσ (k)|2. (46)
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-0.04 -0.02 0 0.02
Vxc(eV)

0

0.5

1

T S
C

(K
)

Figure 3. The results of our numerical solution of the linearized gap equations are shown by the
points. The line is a fit to the calculated points by a cubic equation.

As T → TC from below, |�
k
| → 0 and hence Eσ (k) → ε(k) + σVxc. Therefore, the gap

equation becomes

�σσ (k) =
∑
k′

Uσσ (k − k′)
2(ε(k′) − σVxc)

tanh

(
ε(k′) − σVxc

2kBT

)
�σσ (k′). (47)

Thus, near TC the gap equation is linear. This allows TC to be determined very accurately.
Further by comparing the transition temperatures of various symmetries, one can find which
has the highest transition temperature and hence which state occurs for T � TC.

Clearly, one cannot, in general, use the linearized gap equation to study transitions from
one superconducting state to another as the gap equation can no longer be linearized below the
first superconducting transition. The exception to this rule is the transition from an ESP state
with only one type of pairing to an ESP state with both ↑↑ and ↓↓ pairing (an example of
such a transition is the transition from the A1 phase to the A2 phase), because of the complete
separation of the spin-up and spin-down subsystems in the presence of exchange splitting and
the absence of opposite spin pairing or spin flip processes.

We solved the linearized gap equations (47) numerically for parameters chosen of ZrZn2

(see [30] for a discussion). To do this we used a simple cubic tight binding model and a k-space
integration mesh of 109 points. A fine integration mesh is required to accurately determine
the density of states (DOS). Our method (implicitly) requires an accurate calculation of the
spin-dependent DOS, Dσ(εF ). This is particularly important in our case as we are varying
the exchange splitting and thus we are changing Dσ(εF ), so any errors in evaluating Dσ(ε)

will lead to significant errors in our calculation of the variation of TC with Vxc.
We show the results of our numerical calculations in figure 3. The line is a cubic curve

fitted to the numerical data. For any given exchange splitting, Vxc, there are two transition
temperatures, corresponding to the two separate spin components of the ESP order parameter.
We have plotted the transition temperature for ↑↑ pairing on the positive Vxc side of the graph
and the transition temperature for ↓↓ paring on the negative Vxc scale. There are several
reasons for plotting the data in this way.

(i) In this way, the graph shows the behaviour of the ↑↑ pairing state over a full range of
exchange splitting, from positive to negative.
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0 0.01 0.02 0.03

Vxc(eV)

0

0.5
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T
S

C
(K

)
Ferromagnetic
Metal

A1 phase

A2 phase

Figure 4. The phase diagram of our model. The critical temperature is shown for both A1 and A2
phases over a range of exchange splittings. The hatched area indicates the A phase, which is the
ground state when Vxc = 0.

(ii) We see that the point Vxc = 0 is not a special case, and the curve is smooth there.
(iii) We also have a larger data range to fit over, and thus increase the accuracy of the cubic fit.

Zero exchange splitting is not a special point because in both the nonlinear and linearized
gap equations exchange splitting is mathematically equivalent to a change in chemical
potential. Thus, the graph plotted in the manner shown in figure 3 can also be interpreted as
a plot of critical temperature of the triplet A phase as a function of the chemical potential in
zero exchange splitting.

We now plot the critical temperature for both ↑↑ and ↓↓ pairing on the same graph
(figure 4). This plot is then the (Vxc, T ) superconducting phase diagram for our model. (This,
of course, assumes that no further phase transitions occur at low temperatures.) The higher
transition temperature is the transition to the A1 phase (where only ↑↑ pairing occurs) and the
second transition is a transition to the A2 phase (where ↓↓ pairing begins). In the paramagnetic
state (the line Vxc = 0), the superconducting state is an A phase as the superconducting order
parameter is the same for both the ↑↑ and ↓↓ pairing states. (The A2 phase becomes the A
phase via a cross over, rather than a phase transition.)

The phase diagram shown in figure 4 is clearly equivalent to the A1–A2 splitting of
3He in a magnetic field. Experimental measurement of this phase transition in 3He due to
Remeijer et al are reported in [31]. At first sight, figure 4 and the results of [31] appear rather
different, however they are in fact almost identical, as we will now show. The dimensionless
measure of the exchange splitting for the Remijer et al experiments is µnB

kBTF
, where TF is

the Fermi temperature and µn is the nuclear magnetron for 3He, while for our calculation
the dimensionless exchange splitting is given by Vxc

W
where W = 16t is the bandwidth. The

experiments of Remeijer et al were not performed at constant pressure, which complicates the
analysis somewhat, however, they conclude that

T
A1

C − T
A2

C

T A
C

= ã

(
µnB

kBTF

)
+ b̃

(
µnB

kBTF

)2

(48)
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where ã = 36.3 ± 0.91 and b̃ = 522 ± 17 in the range 0 � µnB

kBTF
� 0.01 at an effective

pressure of 3.4 MPa, i.e., the splitting is, to a very good approximation linear. The equivalent
exchange splitting in our calculations is Vxc � 0.01W = 0.01 eV. It can clearly be seen from
figure 4 that our calculations give an approximately linear splitting between the A1 and A2

phase transitions over the range of exchange splitting 0 � Vxc � 0.01 eV. Hence our results
are consistent with the what is known about 3He. (Although, of course, we had no right to
expect this agreement as our parameters where chosen for ZrZn2 and not 3He.) Further this
illustrates the fact that ferromagnetic superconductors will provide an excellent laboratory in
which to study the splitting of the A1 and A2 phase transitions (and the nonlinear splitting in
particular) over a far greater range of exchange splitting than is possible in 3He. Further, when
the effects of scattering from non-magnetic impurities are included this model gives results
that are qualitatively consistent with the observed pressure dependence of TC in ZrZn2 [17,
30]. The impurity concentration required to drive TC to zero depends on the value of TC in the
absence of impurity scattering. Thus in a dirty superconductor, it is possible to have TC = 0
in the paramagnetic phase (Vxc = 0) but a finite transition temperature in the ferromagnetic
phase (Vxc �= 0). This gives the illusion that ferromagnetism and superconductivity disappear
at the same pressure.

5. Discussion

We have derived gap equations for superconductivity in coexistence with ferromagnetism. We
have done this for s-wave singlet states and for p-wave triplet states with either ESP or OSP
pairing. We used these gap equations to study the behaviour of these states as a function of
exchange splitting.

For the singlet state, we found that our gap equations reproduced the Clogston–
Chandrasekhar limiting behaviour and the phase diagram of the Baltensperger–Sarma equation
(neglecting the possibility of an FFLO state). We also showed that the singlet gap equation
leads to the result that the superconducting order parameter is independent of exchange splitting
at zero temperature. This fact was assumed in the derivation of the Clogston–Chandrasekhar
limit.

OSP triplet states showed a very similar behaviour to the singlet state in the presence
of exchange splitting. This leads to the conclusion that the effect of exchange splitting on a
superconducting state is determined by whether the state contains OSP or ESP. (All singlet
states are, by definition, OSP states.)

In contrast, ESP triplet states show a very different behaviour in an exchange field. In
particular, there is no Clogston–Chandrasekhar limiting. Further, TC is actually increased by
exchange splitting because Dσ(εF ) is changed by the exchange splitting and TC is dependent
on Dσ(εF ). This effect is well known in 3He, but has previously only been studied in a
Ginzburg–Landau formalism [32]. The gap equations presented here will allow for far more
detailed study of both the increase of TC and for the study of the splitting of the A1 and A2

phases by exchange splitting.
If the experimentally occurring ferromagnetic superconductors are ESP triplet pairing

states, as seems likely from the absence of Clogston–Chandrasekhar limiting, then these
systems will allow for study of this effect at far greater exchange splittings than can be
archived with magnetic fields in 3He. The gap equations presented here will also be useful for
studying these materials in their own right, in particular we hope that these will prove useful
for identifying the superconducting pairing symmetry of these ferromagnetic superconductors.
Our formalism is quite general, and can be applied to more realistic band structures and pairing
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models, although the additional complication of the vector potential will have to be overcome
before one can make complete theoretical predictions for these materials.
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